This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



**To cite this Article** Li, Zhen-Hua , Zheng, Cun , Chen, Ren-Er and Su, Weike(2009) 'Intramolecular Cyclization of 2'-Aminochalcones by Halomethyleniminium Salts Derived from BTC/DMF', Organic Preparations and Procedures International, 41: 2, 156 – 161

To link to this Article: DOI: 10.1080/00304940902802156 URL: http://dx.doi.org/10.1080/00304940902802156

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Organic Preparations and Procedures International, 41:156–161, 2009 Copyright © Taylor & Francis Group, LLC ISSN: 0030-4948 print DOI: 10.1080/00304940902802156



# Intramolecular Cyclization of 2'-Aminochalcones by Halomethyleniminium Salts Derived from BTC/DMF

Zhen-Hua Li, Cun Zheng, Ren-Er Chen, and Weike Su

Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China

Quinolines and their derivatives occur in numerous natural products. Many quinolines exhibit a broad spectrum of biological activities such as anti-malarials,<sup>1</sup> anti-fungal,<sup>2</sup> anti-depressants,<sup>3</sup> etc. There are many publications concerning the methods for the synthesis of various 2-substituted-4-chloroquinolines,<sup>4–6</sup> but to the best of our knowledge, the synthesis of 2-substituted-4-chloro-*N*-formyl-1,2-dihydroquinolines has rarely been reported so far. Comparatively, the Vilsmeier cyclization of 2'-aminochalcones is a convenient method for the synthesis of 2-substituted-4-chloro-*N*-formyl-1,2-dihydroquinolines.<sup>7</sup> However, the traditional Vilsmeier reagent employs the use of phosphorus oxychloride, which forms inorganic phosphorus salts as by-products.<sup>8</sup> Due to the great importance of quinolines, the development of novel synthetic methods remains an active research area. *bis*-(Trichloromethyl) carbonate (BTC) in combination with DMF, has emerged as a versatile synthetic auxiliary for the synthesis of 2-substituted-4-chloro-*N*-formyl-1,2-dihydroquinolines from the reaction of 2'-aminochalcones with halomethyleniminium salts derived from BTC/DMF (*Scheme 1*).



a)  $R = C_6H_5$ ; b)  $R = p-ClC_6H_4$ ; c)  $R = m-ClC_6H_4$ ; d)  $R = p-MeOC_6H_4$ ; e)  $R = p-NO_2C_6H_4$ ; f)  $R = m-FC_6H_4$ ; g)  $R = m-BrC_6H_4$ ; h)  $R = 2-F-6-ClC_6H_3$ ; i) R = 2-furyl; j) R = 2-thienyl; k) R = 3,4-diMeC<sub>6</sub>H<sub>3</sub>.

Scheme 1

Submitted October 12, 2008.

Address correspondence to W.K. Su, Zhejiang University of Technology, College of Pharmaceutical Sciences, Hangzhou, 310014, P. R. China. E-mail: suweike@zjut.edu.cn

|                   |              |                                 |                           | · · · ·                                     |
|-------------------|--------------|---------------------------------|---------------------------|---------------------------------------------|
| Cmpd <sup>a</sup> | Yield<br>(%) | mp (°C)<br>( <i>lit</i> . m.p.) | IR<br>(cm <sup>-1</sup> ) | <sup>1</sup> H NMR ( $\delta$ )             |
| 2a                | 86           | Oil Dense                       | 1682                      | 6.38 (d, 1 H, J = 6.5 Hz, 2-H), 6.71        |
|                   |              | oil <sup>7</sup>                | 952                       | (d, 1 H, J = 6.5 Hz, 3-H), 7.23-7.32        |
|                   |              |                                 | 759                       | (m, 3 H, ArH), 7.39–7.43 (m, 3 H,           |
|                   |              |                                 |                           | ArH), 7.54 (d, 1 H, $J = 7.5$ Hz, ArH),     |
|                   |              |                                 |                           | 7.60–7.62 (m, 2 H, ArH), 8.83 (s, 1         |
|                   |              |                                 |                           | H, CHO)                                     |
| 2b                | 92           | 118-120                         | 1675                      | 6.31 (d, 1 H, J = 6.5 Hz, 2-H), 6.40        |
|                   |              | $(110 - 119^7)$                 | 839                       | (d, 1 H, J = 6.0 Hz, 3-H), 7.04-7.06        |
|                   |              | (                               | 756                       | (m, 1 H, ArH), 7.21 (s, 4 H, ArH),          |
|                   |              |                                 |                           | 7.26–7.33 (m. 2 H. ArH), 7.71               |
|                   |              |                                 |                           | (m, 1 H, ArH), 8.66 (s, 1 H, CHO)           |
| 2c                | 93           | 75–77                           | 1675                      | 6.33 (d, 1 H, J = 6.5 Hz, 2-H), 6.40        |
|                   |              | $(77 - 78^7)$                   | 831                       | (d, 1 H, J = 6.0 Hz, 3-H), 7.08-7.16        |
|                   |              |                                 | 761                       | (m, 1 H, ArH), 7.14–7.36 (m, 5 H,           |
|                   |              |                                 |                           | ArH), 7.71–7.74 (m, 2 H, ArH), 8.68         |
|                   |              |                                 |                           | (s, 1 H, CHO)                               |
| 2d                | 82           | 69–71                           | 1687                      | 3.74 (s, 3 H, MeO), $6.33$ (d, 1 H, $J =$   |
|                   |              | (68–69 <sup>7</sup> )           | 838                       | 6.0 Hz, 2-H), $6.40$ (d, 1 H, $J = 6.0$     |
|                   |              | × ,                             | 759                       | Hz, 3-H), 6.78–6.80 (m, 2 H, ArH),          |
|                   |              |                                 |                           | 7.04–7.06 (m, 1 H, ArH), 7.22–7.23          |
|                   |              |                                 |                           | (m, 2 H, ArH), 7.26–7.32 (m, 2 H,           |
|                   |              |                                 |                           | ArH), 7.72–7.74 (m, 1 H, ArH), 8.67         |
|                   |              |                                 |                           | (s, 1 H, CHO)                               |
| 2e                | 81           | 151-153                         | 1674                      | 6.37 (d, 1 H, J = 6.5 Hz, 2-H), 6.51        |
|                   |              |                                 | 841                       | (d, 1 H, J = 6 Hz, 3-H), 7.08-7.10          |
|                   |              |                                 | 757                       | (m, 1 H, ArH), 7.30–7.38 (m, 2 H,           |
|                   |              |                                 |                           | ArH), 7.45–7.47 (m, 2 H, ArH),              |
|                   |              |                                 |                           | 7.74–7.75 (m, 1 H, ArH), 8.11–8.14          |
|                   |              |                                 |                           | (m, 2 H, ArH), 8.70 (s, 1 H, CHO)           |
| 2f                | 87           | Oil                             | 1682                      | 6.34 (d, 1 H, J = 6.5 Hz, 2-H), 6.42        |
|                   |              |                                 | 844                       | (d, 1 H, J = 6.5 Hz, 3-H), 6.92-7.09        |
|                   |              |                                 | 759                       | (m, 2 H, ArH), 7.08–7.09 (m, 2 H,           |
|                   |              |                                 |                           | ArH), 7.22–7.24 (m, 1 H, ArH),              |
|                   |              |                                 |                           | 7.25–7.72 (m, 2 H, ArH), 7.73 (d, 1         |
|                   |              |                                 |                           | H, J = 1.5, ArH, 8.69 (s, 1 H, CHO)         |
| 2g                | 85           | 73–75                           | 1685                      | 6.34 (d, 1 H, <i>J</i> = 6.5 Hz, 2-H), 6.41 |
|                   |              |                                 | 833                       | (d, 1 H, J = 6.5 Hz, 3-H), 7.01-7.16        |
|                   |              |                                 | 758                       | (m, 2 H, ArH), 7.22 (d, 1 H, J = 7.0        |
|                   |              |                                 |                           | Hz, ArH), 7.28–7.35 (m, 3 H, ArH),          |
|                   |              |                                 |                           | 7.38–7.44 (m, 1 H, ArH), 7.73–7.75          |
|                   |              |                                 |                           | (m, 1 H, ArH), 8.69 (s, 1 H, CHO)           |
|                   |              |                                 |                           | (Continued on next page)                    |

| Table 1                                                                              |
|--------------------------------------------------------------------------------------|
| Synthesis of 2-Substituted-4-chloro-N-formyl-1,2-dihydroquinolines using BTC and DMF |

| (Continued)       |              |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cmpd <sup>a</sup> | Yield<br>(%) | mp (°C)<br>( <i>lit</i> . m.p.) | IR<br>(cm <sup>-1</sup> ) | <sup>1</sup> H NMR ( $\delta$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2h <sup>b</sup>   | 94           | Oil                             | 1687<br>759               | 6.09 (d, 1 H, <i>J</i> = 5.5 Hz, 2-H), 6.86 (d, 1 H, <i>J</i> = 1 Hz, 3-H), 6.87–6.93 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |              |                                 |                           | 1 H, ArH), 7.13–7.22 (m, 3 H, ArH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |              |                                 |                           | 7.25–7.28 (m, 1 H, ArH), 7.36–7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |              |                                 |                           | (m, 1 H, ArH), 7.70–7.72 (m, 1 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>·</b> :        | 0.4          | 100, 100                        | 1(77                      | ArH), 8.80 (s, 1 H, CHO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21                | 84           | 120-122                         | 10//                      | 0.38 (d, 1 H, $J = 0.5$ HZ, 2-H), $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |              |                                 | 849                       | (d, 1 H, J = 6 Hz, 3-H), 6.8 / -6.89 (m, 1 H, 5 / H) < 6.07 (c) 9 (m + 1 H, 4 / H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |              |                                 | /04                       | $1 \text{ H}, 5 \text{ -H}, 6.97 \text{ -} 6.98 \text{ (m, 1 H, 4 \text{ -H})},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |              |                                 |                           | (1.07 - 7.09 (III, 1.11, AIII), 7.17 - 7.18 (1.11, AIII), 7.26, 7.24 (1.11, AIII), 7.26, 7.24 (1.11, AIII), 7.26, 7.24 (1.11, AIII), 7.26, 7.24 (1.11, AIII), 7.26 |
|                   |              |                                 |                           | (u, 1 n, J = 1.5 nZ, AIn), 7.20-7.54<br>(m 2 H 3' H and ArH) 7.72, 7.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |              |                                 |                           | (m, 2 H, 3 H and AH), 7.72-7.74<br>(m 1 H ArH) 8 68 (s 1 H CHO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2i                | 86           | 130-132                         | 1687                      | 6.37 (d 1 H J = 6.5 Hz 2-H) 6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -J                | 00           | 100 102                         | 785                       | (d, 1 H, J = 6.0 Hz, 3-H), 6.86-6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |              |                                 |                           | (m, 1 H, 5'-H), 6.97 (d, 1 H, $J = 3.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |              |                                 |                           | Hz, 4'-H), 7.07 (d, 1 H, $J = 7.5$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |              |                                 |                           | ArH), 7.17 (d, 1 H, $J = 5$ Hz, ArH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |              |                                 |                           | 7.26–7.33 (m, 2 H, 3'-H and ArH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |              |                                 |                           | 7.30 (d, 1 H, <i>J</i> = 7.5 Hz, ArH), 8.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |              |                                 |                           | (s, 1 H, CHO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2k                | 83           | 81-83                           | 1672                      | 2.18 (s, 6 H, CH <sub>3</sub> ), 6.32 (d, 1 H, $J = 6.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |              |                                 | 765                       | Hz, 2-H), 6.37 (d, 1 H, $J = 6.5$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |              |                                 |                           | 3-H), 6.97–7.01 (m, 2 H, ArH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |              |                                 |                           | 7.05–7.07 (m, 2 H, ArH), 7.25–7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   |              |                                 |                           | (m, 2 H, ArH), 7.70–7.72 (m, 1 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |              |                                 |                           | ArH), 8.67 (s, 1 H, CHO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Table 1                                                                              |
|--------------------------------------------------------------------------------------|
| Synthesis of 2-Substituted-4-chloro-N-formyl-1,2-dihydroquinolines using BTC and DMI |
| (Continued)                                                                          |

<sup>a</sup>) Yellow solids unless otherwise stated.

It was determined that the best ratio of 2'-aminochalcone/BTC/DMF in toluene should be 1:2:6. A temperature of 90°C was found to be best to carry out the conversion and a wide range of substituted 2'-aminochalcones were subjected to these conditions to afford a variety of 2-substituted-4-chloro-*N*-formyl-1,2-dihydroquinolines in good to excellent yields (*Table 1*). 2'-Aminochalcones with electron-withdrawing group (*e.g.* 2-F-6-ClC<sub>6</sub>H<sub>3</sub> and *p*-ClC<sub>6</sub>H<sub>4</sub>) were obtained in high yields, while with 2'-aminochalcones bearing electrondonating groups (*e.g. p*-MeOC<sub>6</sub>H<sub>4</sub> and 3,4-diMeC<sub>6</sub>H<sub>3</sub>), the reaction proceeded in relatively low yields. The structures of the compounds were confirmed by <sup>1</sup>H-NMR, IR and MS (*Table* 2). New compounds were further comfirmed by <sup>13</sup>C NMR and elemental analysis (*Table 3*).

| Cmpd <b>2</b> | MS(EI) <i>m/z</i> (%)                                                                                                 | <sup>13</sup> C NMR (δ)                                                                                                 | Elemental<br>Analysis Found<br>(Calcd)                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 2e            | 314 (M <sup>+</sup> , 9), 316 ([M + 2] <sup>+</sup> , 3),<br>192 (33), 164 (100)                                      | 51.8, 118.1, 123.2,<br>124.1, 126.1, 126.2,<br>128.3, 130.0, 130.7,<br>144.1, 161.4                                     | C, 60.78 (61.06);<br>H, 3.51 (3.52);<br>N, 8.91 (8.90) |
| 2f            | 287 (M <sup>+</sup> , 39), 289 ([M + 2] <sup>+</sup> ,<br>13), 192 (55), 164 (100)                                    | 52.1, 114.2, 114.4,<br>115.3, 115.5, 118.1,<br>123.0, 124.2, 124.3,<br>125.9, 129.2, 130.3,<br>130.4, 134.5, 161.5      | C, 66.48 (66.79);<br>H, 3.83 (3.85);<br>N, 4.86 (4.87) |
| 2g            | 346 (M <sup>+</sup> , 28), 348 ([M + 2] <sup>+</sup> ,<br>34), 350 ([M + 4] <sup>+</sup> , 9), 192<br>(70), 164 (100) | 52.0, 118.1, 122.9,<br>124.0, 124.3, 125.9,<br>126.0, 129.3, 130.3,<br>131.6, 134.4, 140.2,<br>161.6                    | C, 54.82 (55.12);<br>H, 3.17 (3.18);<br>N, 4.01 (4.02) |
| 2h            | 320 (M <sup>+</sup> , 6), 321 ([M + 2] <sup>+</sup> , 8),<br>324 ([M + 4] <sup>+</sup> , 2), 192 (45),<br>164 (100)   | 50.7, 115.0, 115.2,<br>116.0, 121.0, 124.9,<br>125.7, 125.8, 125.8,<br>128.5, 129.7, 129.8,<br>130.3, 162.1             | C, 59.45 (59.65);<br>H, 3.12 (3.13);<br>N, 4.37 (4.35) |
| 2i            | 259 (M <sup>+</sup> , 27), 261 ([M + 2] <sup>+</sup> , 9),<br>230 (70), 164 (100)                                     | 48.1, 118.0, 124.2,<br>125.9, 126.2, 126.9,<br>129.3, 130.3, 134.1,<br>140.7, 160.8                                     | C, 64.54 (64.75);<br>H, 3.86 (3.88);<br>N, 5.40 (5.39) |
| 2j            | 275 (M <sup>+</sup> , 15), 277 ([M + 2] <sup>+</sup> , 5),<br>246 (73), 164 (100)                                     | 48.1, 118.3, 124.2,<br>124.2, 125.8, 125.9,<br>126.2, 126.4, 126.9,<br>129.3, 130.3, 134.1,<br>140.7, 160.8             | C, 60.76 (60.98);<br>H, 3.64 (3.66);<br>N, 5.09 (5.08) |
| 2k            | 297 (M <sup>+</sup> , 15), 299 ([M + 2] <sup>+</sup> , 4),<br>192 (35), 164 (100)                                     | 19.5, 19.8, 52.6, 118.1,<br>124.6, 125.3, 125.7,<br>128.3, 128.6, 130.0,<br>130.0, 134.8, 135.4,<br>136.9, 137.1, 161.5 | C, 72.30 (72.60);<br>H, 5.39 (5.42);<br>N, 4.71 (4.70) |

 Table 2

 MS, <sup>13</sup>C NMR and Elemental Analysis for Unknown Compounds

In summary, we have developed an efficient intramolecular cyclization of 2'-aminochalcones to 2-substituted-4-chloro-*N*-formyl-1,2-dihydroquinolines by halomethyleniminium salts derived from BTC/DMF. This method provides excellent chemoselectivity, higher yields, and avoids the formation of inorganic phosphorus salts.

 Table 3

 <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS, and Elemental Analysis for Unknown Compounds 1

| Cmpd 1                                 | 1f                                                                                                                                                                                                                          | 1h                                                                                                                                                                                                         | 1k                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mp(°C)<br><sup>1</sup> H NMR           | 105.2–106.5<br>6.35 (br s, 2 H, NH <sub>2</sub> ),<br>6.69–6.72 (m, 2 H,<br>ArH), 7.06–7.11 (m,<br>1H, ArH),<br>7.26–7.39 (m, 4 H,<br>ArH), 7.58–7.70 (m,<br>2 H, CH = CH),<br>7.83–7.86 (m, 1 H,<br>ArH)                   | 107.5–108.7<br>6.43 (br s, 2 H, NH <sub>2</sub> ),<br>6.68–6.72 (m, 2 H,<br>ArH), 7.05–7.10 (m,<br>2 H, ArH),<br>7.22–7.32 (m, 3 H,<br>CH = CH, ArH),<br>7.83 (m, 1 H, ArH),<br>7.90–7.95 (m, 2 H,<br>ArH) | 99.8–101.1<br>2.30 (s, 3 H, CH <sub>3</sub> ),<br>2.31 (s, 3 H, CH <sub>3</sub> ),<br>6.33 (br s, 2 H,<br>NH <sub>2</sub> ), 6.69–6.72<br>(m, 2 H, ArH), 7.17<br>(d, 1 H, $J = 7.6$ Hz,<br>ArH), 7.25–7.30 (m,<br>2 H, ArH), 7.57 (d,<br>1 H, $J = 15.6$ Hz,<br>CH = CH), 7.71 (d,<br>1 H, $J = 15.6$ Hz,<br>CH = CH),<br>7.86–7.88 (m, 1 H,<br>ArH) |
| <sup>13</sup> C NMR (δ)                | 114.3 (d, $J = 22$ Hz),<br>115.9, 116.9 (d, $J = 21.2$ Hz) 117.3,<br>118.9, 120.2, 124.3<br>(d, $J = 13.7$ Hz),<br>130.4<br>(d, $J = 8.3$ Hz),<br>131.0, 134.5, 137.6,<br>141.4, 151.1, 161.9<br>(d, $J = 245$ Hz)<br>191.3 | 114.7 (d, $J = 23.5$<br>Hz), 115.9, 117.3.,<br>120.1 (d, $J = 10.7$<br>Hz), 126.0, 129.9,<br>130.0, 130.2, 130.3,<br>131.2, 132.6, 134.5,<br>151.2, 163.2, 191.6                                           | 19.7, 19.8, 115.9,<br>117.3, 119.4, 122.0,<br>126.0, 129.4, 123.2,<br>131.0, 133.0, 134.1,<br>137.1, 139.3, 143.3,<br>150.8, 191.9                                                                                                                                                                                                                   |
| MS(EI) <i>m/z</i> (%)                  | 241 (M <sup>+</sup> , 68), 146<br>(100)                                                                                                                                                                                     | 275 (M <sup>+</sup> , 51), 277<br>([M+2], 17), 146<br>(100)                                                                                                                                                | 251 (M <sup>+</sup> , 100) 146<br>(100)                                                                                                                                                                                                                                                                                                              |
| Elemental<br>Analysis Found<br>(Calcd) | C, 74.66 (74.67), N,<br>5.85 (5.81), H, 4.98<br>(5.01)                                                                                                                                                                      | C, 65.31 (65.35), N,<br>5.06 (5.08), H, 4.01<br>(4.02)                                                                                                                                                     | C, 81.21 (81.24), N,<br>5.54 (5.57), H, 6.69<br>(6.82)                                                                                                                                                                                                                                                                                               |

### **Experimental Section**

Melting points (mp) were determined on a digital melting point apparatus WRS-1B and are uncorrected. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were obtained on a Bruker ANANCE III-500 spectrometer in CDCl<sub>3</sub> using TMS as an internal standard. Infrared spectra were recorded neat or as KBr pellets on a Thermo Nicolet Avatar 370 spectrophotometer. MS (EI) spectra were acquired on a Finnigan Trace DSQ spectrometer. Elemental analysis was determined

on a Carlo-Erba 1108 instrument. The progress of the reaction was monitored by TLC. The prerequisite 2'-aminochalcones were prepared as previously described.<sup>13</sup>

### General Procedure for the Preparation of 2-Substituted-4-chloro-N-formyl-1,2-dihydroquinolines.

A solution of BTC (0.3 g, 1 mmol) in toluene (8 mL) was added dropwise to a solution of DMF (0.3 mL, 3 mmol) in toluene (5 mL) immersed in an ice-water cooled bath. The mixture was stirred for 20 minutes. The temperature was then raised to 20°C and was stirred for an additional 0.5–1 hour. Then substituted 2'-aminochalcones **1** (0.5 mmol) in toluene (10 mL) was added dropwise to the mixture below 5°C, and when the addition was complete, the mixture was heated to 90°C and maintained for 1–3 hours. After completion of the reaction [monitored by TCL (petroleum ether/ethyl acetate = 5:1)], the mixture was poured into ice water and stirred for 1–1.5 hour. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (20 mL × 2). The combined organic layers was washed successively with 10% NaOH (20 mL × 2) and then with brine (20 mL × 3). After evaporation of the organic solvent, the residue was subjected to column chromatography. Elution with petroleum ether/ethyl acetate 20:1) afforded the pure products.

#### Acknowledgement

We are grateful to the National Natural Science Foundation of China (Nos. 20876147 and 20676123) for financial support.

#### References

- 1. R. W. Winter, J. X. Kelly, M. J. Smilkstein, R. Dodean, D. Hinrichs and M. K. Riscoe, *Exp Parasitol.*, **118**, 487 (2008).
- R. Musiol, J. Jampilek, K. Kralova, D. R. Richardson, D. Kalinowski, B. Podeszwa, J. Finster, H. Niedbala, A. Palkaa and J. Polanskia, *Bioorg. Med. Chem.*, 15, 1280 (2007).
- 3. A. A. Alhaider, M. A Abdelkader and J. L. Eric, J. Med. Chem., 28, 1394 (1985).
- 4. M. C. Kimber, J. P. Geue, S. F. Lincoln, A. D. Ward and E. R. T. Tiekink, *Australian J. Chem.*, **56**, 39 (2003).
- 5. C. Wolf and R. Lerebours, J. Org. Chem., 68, 7077 (2003).
- 6. B. K. Chan and M. A. Ciufolini, J. Org. Chem., 72, 8489 (2007).
- 7. S. Akila, S. Selvi and K. Balasubramanian, Tetrahedron, 57, 3465 (2001).
- 8. W. Ziegenbein and W. Franke, Angew. Chem. Int. Ed., 71, 573 (1959).
- 9. L. Cotarca, P. Delogu, A. Nardelli and V. Šunjić, Synthesis, 553 (1996).
- W. K. Su, W. H. Zhong, G. F. Bian, X. J. Shi and J. P. Zhang, Org. Prep. Proced. Int., 36, 499 (2004).
- 11. I. A. Rivero, K. A. Espinoza and A. Ochoa, J. Comb. Chem., 6, 270 (2004).
- 12. W. K. Su, and C. Jin, Org. Lett., 9, 993 (2007).
- 13. J. A. Donnelly and D. F. Farrell, J. Org. Chem., 55, 1757 (1990).